3.486 \(\int \frac{\tanh ^2(e+f x)}{\sqrt{a+b \sinh ^2(e+f x)}} \, dx\)

Optimal. Leaf size=156 \[ \frac{\text{sech}(e+f x) \sqrt{a+b \sinh ^2(e+f x)} \text{EllipticF}\left (\tan ^{-1}(\sinh (e+f x)),1-\frac{b}{a}\right )}{f (a-b) \sqrt{\frac{\text{sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}}-\frac{\text{sech}(e+f x) \sqrt{a+b \sinh ^2(e+f x)} E\left (\tan ^{-1}(\sinh (e+f x))|1-\frac{b}{a}\right )}{f (a-b) \sqrt{\frac{\text{sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}} \]

[Out]

-((EllipticE[ArcTan[Sinh[e + f*x]], 1 - b/a]*Sech[e + f*x]*Sqrt[a + b*Sinh[e + f*x]^2])/((a - b)*f*Sqrt[(Sech[
e + f*x]^2*(a + b*Sinh[e + f*x]^2))/a])) + (EllipticF[ArcTan[Sinh[e + f*x]], 1 - b/a]*Sech[e + f*x]*Sqrt[a + b
*Sinh[e + f*x]^2])/((a - b)*f*Sqrt[(Sech[e + f*x]^2*(a + b*Sinh[e + f*x]^2))/a])

________________________________________________________________________________________

Rubi [A]  time = 0.181255, antiderivative size = 156, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.24, Rules used = {3196, 471, 422, 418, 492, 411} \[ \frac{\text{sech}(e+f x) \sqrt{a+b \sinh ^2(e+f x)} F\left (\tan ^{-1}(\sinh (e+f x))|1-\frac{b}{a}\right )}{f (a-b) \sqrt{\frac{\text{sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}}-\frac{\text{sech}(e+f x) \sqrt{a+b \sinh ^2(e+f x)} E\left (\tan ^{-1}(\sinh (e+f x))|1-\frac{b}{a}\right )}{f (a-b) \sqrt{\frac{\text{sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}} \]

Antiderivative was successfully verified.

[In]

Int[Tanh[e + f*x]^2/Sqrt[a + b*Sinh[e + f*x]^2],x]

[Out]

-((EllipticE[ArcTan[Sinh[e + f*x]], 1 - b/a]*Sech[e + f*x]*Sqrt[a + b*Sinh[e + f*x]^2])/((a - b)*f*Sqrt[(Sech[
e + f*x]^2*(a + b*Sinh[e + f*x]^2))/a])) + (EllipticF[ArcTan[Sinh[e + f*x]], 1 - b/a]*Sech[e + f*x]*Sqrt[a + b
*Sinh[e + f*x]^2])/((a - b)*f*Sqrt[(Sech[e + f*x]^2*(a + b*Sinh[e + f*x]^2))/a])

Rule 3196

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.)*tan[(e_.) + (f_.)*(x_)]^(m_), x_Symbol] :> With[{ff = FreeF
actors[Sin[e + f*x], x]}, Dist[(ff^(m + 1)*Sqrt[Cos[e + f*x]^2])/(f*Cos[e + f*x]), Subst[Int[(x^m*(a + b*ff^2*
x^2)^p)/(1 - ff^2*x^2)^((m + 1)/2), x], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2]
 &&  !IntegerQ[p]

Rule 471

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(e^(n -
1)*(e*x)^(m - n + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q + 1))/(n*(b*c - a*d)*(p + 1)), x] - Dist[e^n/(n*(b*c -
 a*d)*(p + 1)), Int[(e*x)^(m - n)*(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[c*(m - n + 1) + d*(m + n*(p + q + 1)
+ 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[p, -1] && GeQ[n
, m - n + 1] && GtQ[m - n + 1, 0] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 422

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Dist[a, Int[1/(Sqrt[a + b*x^2]*Sqrt[c +
d*x^2]), x], x] + Dist[b, Int[x^2/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]), x], x] /; FreeQ[{a, b, c, d}, x] && PosQ[
d/c] && PosQ[b/a]

Rule 418

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(Sqrt[a + b*x^2]*EllipticF[ArcT
an[Rt[d/c, 2]*x], 1 - (b*c)/(a*d)])/(a*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]), x] /
; FreeQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]

Rule 492

Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(x*Sqrt[a + b*x^2])/(b*Sqr
t[c + d*x^2]), x] - Dist[c/b, Int[Sqrt[a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b
*c - a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]

Rule 411

Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(Sqrt[a + b*x^2]*EllipticE[ArcTan
[Rt[d/c, 2]*x], 1 - (b*c)/(a*d)])/(c*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]), x] /;
FreeQ[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]

Rubi steps

\begin{align*} \int \frac{\tanh ^2(e+f x)}{\sqrt{a+b \sinh ^2(e+f x)}} \, dx &=\frac{\left (\sqrt{\cosh ^2(e+f x)} \text{sech}(e+f x)\right ) \operatorname{Subst}\left (\int \frac{x^2}{\left (1+x^2\right )^{3/2} \sqrt{a+b x^2}} \, dx,x,\sinh (e+f x)\right )}{f}\\ &=-\frac{\sqrt{a+b \sinh ^2(e+f x)} \tanh (e+f x)}{(a-b) f}-\frac{\left (\sqrt{\cosh ^2(e+f x)} \text{sech}(e+f x)\right ) \operatorname{Subst}\left (\int \frac{\sqrt{a+b x^2}}{\sqrt{1+x^2}} \, dx,x,\sinh (e+f x)\right )}{(-a+b) f}\\ &=-\frac{\sqrt{a+b \sinh ^2(e+f x)} \tanh (e+f x)}{(a-b) f}-\frac{\left (a \sqrt{\cosh ^2(e+f x)} \text{sech}(e+f x)\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1+x^2} \sqrt{a+b x^2}} \, dx,x,\sinh (e+f x)\right )}{(-a+b) f}-\frac{\left (b \sqrt{\cosh ^2(e+f x)} \text{sech}(e+f x)\right ) \operatorname{Subst}\left (\int \frac{x^2}{\sqrt{1+x^2} \sqrt{a+b x^2}} \, dx,x,\sinh (e+f x)\right )}{(-a+b) f}\\ &=\frac{F\left (\tan ^{-1}(\sinh (e+f x))|1-\frac{b}{a}\right ) \text{sech}(e+f x) \sqrt{a+b \sinh ^2(e+f x)}}{(a-b) f \sqrt{\frac{\text{sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}}+\frac{\left (\sqrt{\cosh ^2(e+f x)} \text{sech}(e+f x)\right ) \operatorname{Subst}\left (\int \frac{\sqrt{a+b x^2}}{\left (1+x^2\right )^{3/2}} \, dx,x,\sinh (e+f x)\right )}{(-a+b) f}\\ &=-\frac{E\left (\tan ^{-1}(\sinh (e+f x))|1-\frac{b}{a}\right ) \text{sech}(e+f x) \sqrt{a+b \sinh ^2(e+f x)}}{(a-b) f \sqrt{\frac{\text{sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}}+\frac{F\left (\tan ^{-1}(\sinh (e+f x))|1-\frac{b}{a}\right ) \text{sech}(e+f x) \sqrt{a+b \sinh ^2(e+f x)}}{(a-b) f \sqrt{\frac{\text{sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}}\\ \end{align*}

Mathematica [C]  time = 0.382078, size = 109, normalized size = 0.7 \[ \frac{\sqrt{2} \tanh (e+f x) (-2 a-b \cosh (2 (e+f x))+b)-2 i a \sqrt{\frac{2 a+b \cosh (2 (e+f x))-b}{a}} E\left (i (e+f x)\left |\frac{b}{a}\right .\right )}{2 f (a-b) \sqrt{2 a+b \cosh (2 (e+f x))-b}} \]

Antiderivative was successfully verified.

[In]

Integrate[Tanh[e + f*x]^2/Sqrt[a + b*Sinh[e + f*x]^2],x]

[Out]

((-2*I)*a*Sqrt[(2*a - b + b*Cosh[2*(e + f*x)])/a]*EllipticE[I*(e + f*x), b/a] + Sqrt[2]*(-2*a + b - b*Cosh[2*(
e + f*x)])*Tanh[e + f*x])/(2*(a - b)*f*Sqrt[2*a - b + b*Cosh[2*(e + f*x)]])

________________________________________________________________________________________

Maple [A]  time = 0.161, size = 239, normalized size = 1.5 \begin{align*}{\frac{1}{ \left ( a-b \right ) \cosh \left ( fx+e \right ) f} \left ( -\sqrt{-{\frac{b}{a}}}b \left ( \sinh \left ( fx+e \right ) \right ) ^{3}+a\sqrt{{\frac{a+b \left ( \sinh \left ( fx+e \right ) \right ) ^{2}}{a}}}\sqrt{ \left ( \cosh \left ( fx+e \right ) \right ) ^{2}}{\it EllipticF} \left ( \sinh \left ( fx+e \right ) \sqrt{-{\frac{b}{a}}},\sqrt{{\frac{a}{b}}} \right ) -b\sqrt{{\frac{a+b \left ( \sinh \left ( fx+e \right ) \right ) ^{2}}{a}}}\sqrt{ \left ( \cosh \left ( fx+e \right ) \right ) ^{2}}{\it EllipticF} \left ( \sinh \left ( fx+e \right ) \sqrt{-{\frac{b}{a}}},\sqrt{{\frac{a}{b}}} \right ) +b\sqrt{{\frac{a+b \left ( \sinh \left ( fx+e \right ) \right ) ^{2}}{a}}}\sqrt{ \left ( \cosh \left ( fx+e \right ) \right ) ^{2}}{\it EllipticE} \left ( \sinh \left ( fx+e \right ) \sqrt{-{\frac{b}{a}}},\sqrt{{\frac{a}{b}}} \right ) -\sqrt{-{\frac{b}{a}}}a\sinh \left ( fx+e \right ) \right ){\frac{1}{\sqrt{-{\frac{b}{a}}}}}{\frac{1}{\sqrt{a+b \left ( \sinh \left ( fx+e \right ) \right ) ^{2}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tanh(f*x+e)^2/(a+b*sinh(f*x+e)^2)^(1/2),x)

[Out]

(-(-1/a*b)^(1/2)*b*sinh(f*x+e)^3+a*((a+b*sinh(f*x+e)^2)/a)^(1/2)*(cosh(f*x+e)^2)^(1/2)*EllipticF(sinh(f*x+e)*(
-1/a*b)^(1/2),(a/b)^(1/2))-b*((a+b*sinh(f*x+e)^2)/a)^(1/2)*(cosh(f*x+e)^2)^(1/2)*EllipticF(sinh(f*x+e)*(-1/a*b
)^(1/2),(a/b)^(1/2))+b*((a+b*sinh(f*x+e)^2)/a)^(1/2)*(cosh(f*x+e)^2)^(1/2)*EllipticE(sinh(f*x+e)*(-1/a*b)^(1/2
),(a/b)^(1/2))-(-1/a*b)^(1/2)*a*sinh(f*x+e))/(a-b)/(-1/a*b)^(1/2)/cosh(f*x+e)/(a+b*sinh(f*x+e)^2)^(1/2)/f

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\tanh \left (f x + e\right )^{2}}{\sqrt{b \sinh \left (f x + e\right )^{2} + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(f*x+e)^2/(a+b*sinh(f*x+e)^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(tanh(f*x + e)^2/sqrt(b*sinh(f*x + e)^2 + a), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\tanh \left (f x + e\right )^{2}}{\sqrt{b \sinh \left (f x + e\right )^{2} + a}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(f*x+e)^2/(a+b*sinh(f*x+e)^2)^(1/2),x, algorithm="fricas")

[Out]

integral(tanh(f*x + e)^2/sqrt(b*sinh(f*x + e)^2 + a), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\tanh ^{2}{\left (e + f x \right )}}{\sqrt{a + b \sinh ^{2}{\left (e + f x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(f*x+e)**2/(a+b*sinh(f*x+e)**2)**(1/2),x)

[Out]

Integral(tanh(e + f*x)**2/sqrt(a + b*sinh(e + f*x)**2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\tanh \left (f x + e\right )^{2}}{\sqrt{b \sinh \left (f x + e\right )^{2} + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(f*x+e)^2/(a+b*sinh(f*x+e)^2)^(1/2),x, algorithm="giac")

[Out]

integrate(tanh(f*x + e)^2/sqrt(b*sinh(f*x + e)^2 + a), x)